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The slow flow of a viscous fluid over the solid surface which intersects another boundary surface at an angle is considered. The 
flow is axisymmetric and the surface contours are curved. There is no shear stress on the second surface as in the case of a free 
surface. The flow is investigated near the line of intersection at arbitrary angles. Formulae for the stream function and the normal 
stress at the boundary are obtained for short distances from the line of intersection. The leading term in the expansion corresponds 
to the well-known solution of the problem of flow in a corner. The second term of the expansion of the normal stress at the free 
surface takes into account the curvature of the flow boundaries. The axial symmetry of the flow and the curvature of the boundary 
contours lead to a logarithmic singularity in the normal stress. �9 2005 Elsevier Ltd. All rights reserved. 

Investigations of the slow motions of a viscous fluid in a corner were initiated by Rayleigh [1] who considered the 
case of stationary sides of the corner. Taylor [2] studied the problem of the flow in the comer  formed by two plane 
solid boundaries,  one of which moves. Unlike Taylor's problem, in Moffat's problem [3] there is no shear stress 
on one side of the corner as in the case of a free fluid surface. 

We will consider a similar problem when the intersecting surfaces are not plane. In this extension it seems natural 
to refer to the analysis of the flow at short distances from the line of intersection (the contact line). In this case, 
it is possible to extend the solution of the problem of the flow in a comer  to a wider class of flows as an approximate 
solution. The validity of this extension can be provided by the second term of the asymptotic form, which has not  
been considered so far even in special cases. 

The problem is of interest in the context of fluid mechanics of the wetting of solids by viscous fluids. The contact 
angle can be formed due to the motion of a fluid with a free boundary in a small vicinity of the moving contact 
line. The effect of the dynamic contact angle is based on a slow variation of the slope of the boundary with distance 
according to a non-l inear  asymptotic form [4--6]. This asymptotic form is valid in an intermediate range of 
small scales near  the contact line, where the distances are bounded below by the minimum (microscopic) scale. 
The microscale may be due to the dynamics of a hyperfine percursion film, which moves ahead of the spread 
of the fluid with a contact angle, as has been established in the asymptotic theory [4.5] and was confirmed by 
de Gennes  [7]. 

If a small range of the above-mentioned non-l inear  asymptotic form exists, another  effect is possible: at large 
scales the dynamics of the fluid can only slightly affect the shape of the free surface. This leads to a model of a 
quasi-static surface at large scales [4], which has the following meaning. 

At a liquid-gas interface S, Laplace condition for the mean curvature H holds 

2t~H = Pn + P0 

where Pn is the normal stress in the fluid, P0 is the gas pressure, and a is the surface tension. In the large-scale 
region the stress Pn differs slightly from the static value, that is, from a constant, if there are no body forces. Hence, 
the shape of the interface is approximately defined by the equation of capillary statics, and in this case it may depend 
on time. For the static surface S, one can find the stress P ,  from the viscous flow problem. The surface shape can 
then be refined, i.e. one can obtain a slightly perturbed shape from the boundary condition with varying stress In. 
Hence, the perturbed shape of the surface S will be quasi-static. This model of the dynamics of a spreading fluid 
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with a free surface was pointed out in [4] for improving the shape of a spreading drop, close to a spherical segment 
of varying radius and arbitrary contact angle. The model includes the case of small angles as a special one. 

The model of the spreading of a drop [4] was completed with formulae [5] for the general parameters of the 
spreading model for the case when there is a moving precursion film. The model [4] of the quasi-stationary state 
of the drop surface in the central domain has been used in many papers for the case of small angles, and this is 
reflected in the survey by de Gennes [7]. 

Thus, in the context of the fluid dynamics of the wetting of a solid surface, the problem of viscous fluid flow 
over a solid surface with a static form of free boundary is of some intersect. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  A N D  T H E  M E T H O D  
OF S O L U T I O N  

Consider the axisymmetric flow of a viscous fluid over the solid surface at low Reynolds numbers. The 
free boundary S intersects of  the solid surface Sso~ along a moving contact line. The problem is considered 
in a plane passing through the axis of symmetry of the system; on this plane the boundary surfaces are 
represented by contours (generatrices). Suppose the solid body is stationary. On its surface the fluid 
velocity vanishes 

o = 0 at S~ol ( 1 . 1 )  

On the free surface S the normal velocity of the fluid is equal to the normal velocity of the surface w. 

o" n = w ( 1 . 2 )  

where n is the unit vector of the outward normal to the fluid surface S. 
If  the contour S moves as a rigid body and does not rotate, condition (1.2) takes the form 

o.  n = Yon l, where n I = n . e  I (1.3) 

where v 0 is the velocity of the contact line and e I is the unit vector of the tangent directed to the dry 
part  of  the solid surface. 

In the general case, we specify the velocity w in the limit of a short distance r f rom the contact line 

U. n = Y o n  1 + r + . . . .  r ~ 0 ( 1 . 4 )  

Here  oF is the angular velocity of  rotation of the unit vector "OF of the tangent to the contour S at a 
point of the contact line. 

The shear stress P~ vanished on the contour S: 

Px = ~ - P .  n = 0 (1.5) 

where P is the stress tensor in the fluid and x is the unit vector of  the tangent to the contour S. 
We will introduce a cylindrical system of coordinates x and z, where x is the distance from the axis 

of symmetry and z is the coordinate along this axis. 
We will write the equations for the stream function and the pressure 

0 2 0 2 ( 
E2 v = 0, E = - -  1 0 10V 10u (1.6) 

OX 2 + OZ 2 XOX 1)x -- X O"'Z' 1)z = X ~ X )  

l o p  1 ~ ^ l o p  1 0 ^ 
~'~x = -x'~z EW' ~'~z = x~x E ~  (1.7) 

If  the distance from the contact line is short, a local description of the geometry of the boundaries is 
sufficient. We will assume that the boundary surfaces are smooth, and hence the coordinates of their 
points can be defined by a few terms of the Taylor series expansion. 

We will denote the angle between the intersecting boundaries by tx. 
We will also consider the second angle y, which the tangent vector e I makes with the radial axis x 

(see Fig. 1). We will assume that ~/> 0 if the outward normal to the solid surface is directed towards 
the axis of symmetry, and y < 0 if it is directed from the axis of symmetry. 
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Fig. 1 

We will denote the curvatures of the contours of the surfaces S and S~on on the contact line by kr and 
ks respectively. The point of the contact line has the coordinates x = x0 and z = 0, wherex  0 is the radius 
of the contact line. 

We will introduce a polar system of coordinates r and 0 with origin at the point of the contact line 
when the limit 0 = 0 is in contact with the solid surface and is directed towards its wetted part (see 
Fig. 1). Near the contact line the contour Ssol is close to the tangent: 

l 2 
0 = ~ksr + O(r ), r---) 0 (1.8) 

For small r the free boundary contour S is described by the equation 

1 2 
0 - ~  = ~kFr+O(r ), r---~O (1.9) 

Hence, the geometry of the boundaries is specified by five parameters, namely, the angles ct and ),, the 
radius x 0 of the contact line or its curvature Xo 1, and the contour curvatures kr and ks. 

On the solid surface the stream function vanished, W = 0, and hence W -'-) 0 as r ~ 0, due to the 
absence of a singularity on the contact line. 

In the special case of plane boundaries when the contact line is a straight line, the solution is known 
[3]. We will denote the corresponding stream function and the normal stress at the free surface by ~/0 
and Pn0. In the general case, the function ~/for small values of r can be represented by the expansion 

= u + ~l +.--  (1.10) 

The second term ~1 is a small correction, ~l/1 "~ ~l/0 as r -~ 0. The first term has the well-known from 
W0 = rf(0) and the second term can be sought in the form W1 = r2fl(0) �9 

Using the linearity of  the problem, we can conclude that the perturbation of  the stream function ~z 
is a linear function of the curvatures ko, kF and ks. Hence, the problem of finding ~1 can be split into 
three different problems with the following conditions: 

(1) The curvature of the contact line is non-zero, k0 ~ 0, whereas the two other curvatures vanish. 
(2) The curvature of the free boundary contour is non-zero, kF ~ 0, and k0 = ks = O. 
(3) The curvature of the solid wall contour is non-zero, ks ~ 0, and k 0 = kF = 0 
Below we present the solutions of these three problems sequentially. When solving the third problem 

we shall also analyse the possible influence of the non-stationary state of the boundaries. 

2. P R O B L E M  1: F L O W  W I T H  A X I A L  S Y M M E T R Y  

Assuming kr = 0 and k s = 0, we take into account that k 0 ;~ 0. We will assume that the tangent to the 
free boundary contour at the point of the contact line does not rotate, that is, coF = 0. 

From relations (1.3) and (1.9) at the free boundary we have 

1)0(r, 0) = v 0 s i n 0 t + O ( r  2) for 0 = 0 t + O ( r  2) (2.1) 
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Condition (1.5) for the shear stress to vanish gives 

Pro(r, O) = O(r)  for 0 = a + O(r 2) (2.2) 

where 

1Ovr b y  o v o 
PrO = 7 " ~  "1 Or r (2.3) 

In polar coordinates the velocity components are expressed in terms of the stream function as follows: 

1 0 V 10~1 t 
Or= rxbO,  v 0 =  (2.4) x Or 

Substituting expansion (1.10) into Eq. (1.6), in the main approximation we obtain the biharmonic 
equation 

l a  0 102  
= = (2 .5)  A~u o O, A o r~ r r~ r  + r2002 

In the main approximation, boundary conditions (1.1) on the solid wall give 

0~0 
u = 0, - ~ -  = 0 when 0 = 0 (2.6) 

Here we also add boundary conditions (2.1) and (2.2), written in the main approximation as r ~ 0. We 
will write the well-known solution of the problem for Eq. (2.5) with these conditions in the form 

lit o = rxofo(O) (2.7) 

fo  = v o Q [ s i n O c o s a -  OcosO- a],  Q = s i n a i ( a -  s inacosa)  (2.8) 

The solutions of the problem with homogeneous boundary conditions on the sides of the corner and 
with the condition that they decrease as r ~ 0, decrease more rapidly than V0 for any c~ < re. If (x = 7t, 
the solution degenerates: ~0 = 0. 

The equation for the perturbation V1 follows from relations (1.6), (1.10) and (2.5) 

2 2 0  
Aou l = ~o~6Ou 

Using expressions (2.7) and (2.8), we obtain 

2 4 
Ao~ 1 = voQ(a)  sin(20 - a - y) (2.9) 

We will now derive the boundary conditions for ~1. The conditions on the solid surface give 

Iltl(r, 0) = 0, ~01(r, 0) = 0 (2.10) 

Using the equality 

x - x  o = - r c o s ( 0 - y )  

from relations (2.1) and (2.4) we find the condition on the free boundary 

O~---~l (r, a )  = Vors inacos (a  - T) (2.11) 
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From relations (2.1)-(2.4) it follows that  

32u  1 ~ x ~ u  
~0 ~ = x~'6"~ + xr~176 +"" when 0 = a 

Substituting expansion (1.10) here,  we obtain 

1 ~2~ i ( r  ' = 0 0  _ . . 2 . OoSmaCOS(a - T) - voQ sin a s m ( a  - ),) 
r 2 302 

755 

(2.12) 

As a result we have boundary  conditions (2.10), (2.11) and (2.12) on the sides of  the c o m e r  0 = 0 
and 0 = a.  The  particular solution o f  the problem for Eq. (2.9) with these condit ions has the form 

~ 1  = r 2 f l  ( 0 ) ;  

1 
f l  = ~ooQ{-  c o s a s i n ( 2 0  - ),) - c o s a s i n ~  + 0cos (20  - a - ~/) + 0cos ( a  - u 

(2.13) 

Using the expansion 

and the identities 

1 ~p 1 3(A 1V ~, lbp 
~r~--0 :-x~r[,  ~  xvj ~ r  

Now we rewrite Eq. (1.7) in polar  coordinates  

Hence  

P.ls = n . P . n  = Poo(r,O)+... when 0 = a + O ( r  2) 

^ (13v0 1)r / 
P00  = - p + z ~ [ , r ~  + r = - p + OC 1)  

P, ls = - p ( r ,  ot)+O(1) when r---~0 

1 

I I x- x o 

X X 0 X 2 

b•0Aou = ~-~voQcos(O-a  ) 

0A0~l = v 0 Q c o s ( a  - 7) - 2voQcos (20  - a - ~/) 

~0~-6V~u = 2OoQsin(0 - ~/)sin(0 - a )  

f rom relations (2.15) we find 

13p 2 o o v o  
= - -~-Qcos(0  - a )  + m O c o s ( a -  v) + fi r �9 �9 i 

r xor 

(2.14) 

(2.15) 

We will de termine the normal  stress on the free boundary  S near  the contact  line. In the limit as 
r ---> 0 and taking into account  relations (1.9), (2.7) and (2.13), the normal  stress can be writ ten in the 
form 
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Integrat ing this identity, we obtain 

1 ~P = 2U~176176 + U~176 y) lnr  + x o (2.16) 

F rom relations (2.14) and (2.16) it follows that  as r --~ 0 the normal  stress on the boundary  S is given 
by the formula  

Pn[s = Or~_~tvoQ + P n l ,  P n l =  -IXV~176 a -  y ) l n r  + O(1)  (2.17) 
x0 

The  first te rm in the expansion of  Pn (2.17) corresponds  to the plane problem of  the flow in a 
corner .The second te rmPnl  is related to the axial symmetry  of  the flow, and it is essential that  this te rm 
is infinite at the point  r =  0. The  term Pnl depends  on the angle Y between the radial axis and the unit  
vector  el of  the velocity of  contact  line (see Fig. 1). 

We will consider various values of  this angle. 
If  the fluid flows in a circular tube, 7 = z~/2. 
In  the fluid flows over the surface o f  a solid rod, ~/= -n/2. 
Suppose the fluid flows over a plane surface. Assume that  its wet ted  par t  is a circle; then 7 = 0, which 

corresponds,  in particular, to a liquid drop on a surface. If  the dry par t  o f  the plane solid surface is a 
circle, we have 7 = -7-it; this relates to the case o f  a gas bubble in contact  with a wall. 

A remark on the role of the solutions of the homogeneous problem of the flow in a comer. As can be seen, the 
analysis of the flow in the limit of short distances from the contact line leads to the problem of the flow in a comer 
for the inhomogeneous equation in Ig 1 (1.10) with inhomogeneous conditions on the sides of the comer. It is possible 
to transform the solution of this problem by adding the arbitrary solution ~g of the biharmonic equation with 
homogeneous boundary conditions on the sides of the comer, where ~g ~ 0 as r --* 0. In this case the asymptotic 
solution ~g = ~g0 + ~gl + ... is unchanged if all the solutions of the homogeneous problem decrease more rapidly 
than r e as r --* 0, ~ = o(re). The solutions of homogeneous problem then decrease more rapidly than ~gl and do 
not contribute to the asymptotic solution. In the opposite case the contribution from the solution of the homogeneous 
problem is of greater importance than ~gl. 

For solutions of the form fg = r m § l~g(0) one obtains the well-known equation [3] 

sin2moc-msin2ct = 0; m~: 1, R e m > - I  

A root with real part Rema < 1 exists when a > ~x, = 128.7 ~ and when ~x < cx, for all roots one has Rein1 > 1. 
Hence, the contribution of ~g to the asymptotic solution is of greater importance than the contribution of ~1, if 
the angle ~ is greater than the critical value cx,. If ~x < ~x,, any solution of the homogeneous problem ~ decreases 
more rapidly than ~1 as r ~ 0 and can only contribute to the residual term in expansion (1.10). 

Consequently, the asymptotic expressions for the stream function and the normal stress considered turn out to 
be valid when the angle of contact is less than the critical angle: ct < ~ ,  = 128.7 ~ 

3. P R O B L E M  2: F L O W  W I T H  A C U R V E D  C O N T O U R  O F  T H E  
F R E E  B O U N D A R Y  

We will assume that  the curvature of  the contour  of  the free boundary  kF si non-zero  and k0 = ks = O. 
In  this case it is sufficient to consider  the plane problem. We will use a s t ream function, which differs 
f rom ~t in relation (2.4) by the factor  x0 

lbV 2u (3.1) Or=r- ~ ,  vo- Dr 

In  this case the first term in the expansion for ~g (1.10) has the form 

~g0 = r f0 (0 )  (3.2) 

The  function f0(0) is given by expression (2.8). 
Consider  the unit  vectors o f  the normal  n and of  the tangent  "c to the free boundary.  With an accuracy 

of  O(r  z) we have 
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n r = - D ,  "gO = 8; 8 = kt~rl2 (3.3) 

Using expression (3.3) we find the component of the normal nl along the unit velocity vector el 

n I = sina + 28(r)cosa + ... (3.4) 

Condition (1.5) for the shear stress to vanish gives 

Px = Pro + ( P o o -  err) 5 + . . . .  0 (3.5) 

The component P,0 on the surface S can be represented by the expansion 

0Pro 
Pro(r, a + 5) = Pro(r, a )  + - -~- ( r ,  a ) 8  + .... r --> 0 (3.6) 

From relations (1.10), (2.8) and (3.2) we find 

13Pro. ! 
P r r - P o 0  = O(r), i~ ~-~ jr, 0) = QD0+O(1 ) 

Using these formulae in relations (3.5) and (3.6) and taking into account equality (2.3), we obtain 

1 02~1 02~1 10W! 
- -  + r-'~-r = -1;~ when 0 = a (3.7) 

r 2 3 0 2  3 r  2 

We will write down the condition for the normal velocity of the fluid on the surface S 

'00710 "]" l.)rTl r = 1)0/'I 1 "1- O ( r  2) 

Representing v0 by two terms of the Taylor series expansion and taking into account expressions 
(3.2)-(3.4), we obtain 

3~rl (r, . 2 0~) = - v o k r r ( c o s a -  Qsm a)  (3.8) 

The conditions on the solid surface Ssol can be transferred onto the tangent line 0 = 0 as r ---> 0, since 
the curvature ks = 0. We have 

0 u  ~/(r, 0) = 0, ~-~(r, 0) = 0 when r ---> 0 (3.9) 

Consequently we arrive at the problem for the biharmonic equation with conditions (3.7)-(3.9) given 
on the sides of the corner 0 = 0 and 0 = a. Its particular solution is 

~1/1 = r2~(O), @ = l o o k e Q [ l -  c o s 2 0 -  c t g a ( 2 0 -  sin20)] (3.10) 

The fluid pressure is given by the two-term expression p = P0 + Pl, where the term P0 corresponds 
to W0, andp l  corresponds to W1. From the equation for the pressure 

_10p = ~0---~ A u (3.11) 
I.tOr Otl 

and solution (3.10), we obtain 

Pl = -2~t OokFQctgalnr + O(1) (3.12) 

Substituting expression (3.12) into relation (2.14), we obtain the contribution W1 to the normal stress 
Pn on the surface S 
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cosa  l n r+O(1)  when r ~ 0  (3.13) P n l =  2~tu0kFt~ - s inacosa  

The first term of the expansion of the normal stress Pn = PnO + Pnl is represented by the second formula 
(2.17). The second term of the expansion of the normal stress, given by expression (3.13), is infinite on 
the contact line if a ~ n/2. Like the quantity Pnl (2.17), this term behaves like lnr. 

4. P R O B L E M  3: F L O W  A L O N G  A C U R V E D  WALL 

We will consider the plane problem when the wall curvature ks is non-zero, but kF = 0. The stream 
function is presented by expansion (1.10); formulae (2.8) and (3.2) specify the quantity ~r 

Using the boundary conditions on the surface Ssol, expanding the quantities ~ and vr in Taylor series 
at the point 0 = 0, and taking into account expansion (1.10) and the expression for ~0, we obtain 

~lll(r, 0)  = 0,  ~01(r, 0) = r2ksVoQsina (4.1) 

For small r the boundary conditions on the free surface can be transferred to the tangent 0 = ct, since 
the curvature kF = 0. From relations (1.4), (1.5) and (1.10) we have 

Or (r, a)  = -tOFr (4.2) 

1 ~21k~/l ~2~/I 1 O~/1 
- -  + r -~ - r  = 0 when 0 = a (4.3) 

r 2 002 0r 2 

We will write the solution of the problem for the biharmonic equation in a corner with conditions 
(4.1)-(4.3) 

~1/1 = r2tI~(0) 

2 c a  + tg2a(1 - cos20) - 20 + sin20} �9 (0) = c0+  2D(a) r{  (4.4) 

c = ksOoQsina, D = 2 a - t g 2 a  

Substituting expression(4.4) into (3.11), we find the pressure P l. We have 

1 4c tg2a .  _ 4toFt_ - 
~pl = ~ m . - - - f f - m .  + O(1) 

From expression (2.14) we obtain the second term of the expansion of the normal stress 

at, �9 Q s i n ~ t g 2 a h , .  4tOp 
P n l =  -'~s v0 ~ . . . .  + -'-D-lnr + O(1) (4.5) 

Here ks is the curvature of the rigid wall. The second term takes into account a non-stationary state of 
the surface S. 

Solution (4.5) holds if a r a . ,  where a .  is the root of the equation D(a)  = 0. This quantity is identical 
with the critical angle a .  discussed in Section 2. 

We will consider the tangent to the contour Ssol at the point of the contact line and direct the unit 
vector Zs toward the wetted part of the wall. The wall curvature ks produces a change of the vector Xs 
when the contact line moves. The vector x s rotates with the angular velocity 

to s = - k s  U o (4.6) 

The unit vector "OF of the tangent to the contour of the free boundary rotates with angular velocity 
C0F. The angle between XF and Xs is equal to a. Consequently 
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0[" -" O F -- CO S 

Replacing cop in equality (4.5) using relations (4.6) and (4.7), we arrive at the equation 

(4.7) 

 ,so0 
P,I = 0~_ sinacostx + 2 a  2 a  lnr+  O(1) (4.8) 

which gives the contributions to the expansion of the normal stress on the free surface from the curvature 
of the contour of the solid body ks and from a non-stationary state of the boundaries. 

5. T H E  A S Y M P T O T I C  F O R M U L A  F O R  T H E  N O R M A L  S T R E S S  O N  
T H E  F R E E  S U R F A C E  

Summing the contributions to the normal stress on the surface S, defined by relations (2.17), (3.13) 
and (4.8), in the limit as r --* 0, we obtain the asymptotic expression for the normal stress on free boundary 
in the form 

2 v 0 sin ~t 
Pn = r o~- sinctcoso~ 

r 2k rc~  2 k s -  k0sinotcos(ot- 7) 4t~ ] 
+1.o0 ~-E-_ s]-n--ff-~- ~ + 2a-_~g2ot~lnr + O(1) (5.1) 

where ~0 is the velocity of the contact line tx is the contact angle 7 is the angle related to the axial 
symmetry of the flow (see the figure) and k0, kr and ks are the curvatures of the contact line, the contour 
of the free surface and the contour of the solid body respectively. The contact angle can take values in 
the range (0, a . ) ,  where ct* = 128.7 ~ 

Formula (5.1) is true for short distances form the contact line; its novelty consists in the occurrence 
of a logarithmic term due to bending of the flow boundaries. This term is essential, since it is infinite 
on the contact line. 

In the special case of plane boundaries and a fixed contact angle expression (5.1) is identical with 
the well-known solution [3]. 

Note that the expression for the normal stress (5.1) has a general meaning since it holds for arbitrary 
axisymmetric Stokes flow with intersecting boundaries. 

I wish to thank G. G. Chernyi for discussing the results. 
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